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Abstract The spin-extended H-wk approximation with loealiled overlapping orbitals 
is applied to the low-densily electron gas problem. A procedure is owlined which in the 
of small overlap makes the energy per elemon convergent when the number of electrons tends 
to infinity. As a hrst approximation the perfect pairing case is considered. It is shown that the 
singlet pound stale energy lies in between the energies of femmagnetic and antifemmagnetic 
states for any perfect pairing structure in second order in the overlap approximation. 

1. Infroduction 

The electron gas in a homogeneous positive background field is a very useful and 
acknowledged reference system for various solid state electronic stfucture problems. 
However, even this simplified system cannot be solved exactly and different approximations 
should be used for different regimes. One interesting case is the low-density regime, which 
is closely related to the localization-delocalization transition in a half-filled band problem. 
In this regime the restricted Hartree-Fock (RHF) approximation for the ground state produces 
the uniform electron density distribution. and with correlations taken into account results in 
a Wigner crystal [ 1.21, with electrons strongly localized at BCC lattice sites. The Wigner 
crystal state was treated semiclassically [3-51 and with the quantum Monte Carlo method 
[6,7]. Reviews of these works can be found in papers by March and co-workers [&lo]. The 
quantum-mechanical approach, corresponding to the unrestricted (one-determinant) Hartre- 
Fock (UHF) approximation, was developed in a recent paper by van Dijk and Vertogen [l I] 
using the quantum field technique. But the UHF method @ open '0 criticism because, 
although the Hamiltonian & commutes with the total spin S2 and S, operators, the UHF 
wave function is an-eigenfunction of & and in contrast to the RHF wave function is not 
an eigenfunction of S2, except in some special cases. In fact the N-electron femmagne$c 
state of [ 11 J is the pure spin state and not the antiferromagnetic state, the mean value of S2 
being equal to N/2 in the antiferromagnetic state. 

The aim of the present paper is to apply to the low-density electron gas problem a better 
approximation-the spin-extended Hartree-Fock (m) method, which includes as particular 
cases both RHF and UHF methods. In this paper we will use one of the versions of the EHF 
method, namely the valence.-bond (m) method, which enables us to consider ferromagnetic, 
antiferromagnetic and singlet pure spin states of the electron gas within the same formalism. 

t On leave f" Physics Depamnent, St Petersburg University, St Petersburg, Russia. 
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2. The wave function 

Let us consider the ground state of an N-electron system and let us assume for convenience 
the number N of electrons to be even. In the P.HF method the ground state is usually 
assumed to be a singlet state and one starts with NI2 orbitals (space orbitals) 

&(r) I = 1,2,. .., N/2. (1) 

Bloch functions in the half-filled band case, for example, proceed with N spin orbitals 

@ z I - I ( ~ )  =W)@(d W x )  = @ t l b ) B ( @  I =  L 2 , . . . .  N/2 (2) 

where x stands for space-spin variables, U ,  and for the total wave function takes a single 
Slater determinant of N spin orbitals (2). This wave function is a pure singlet state. Due 
to onedeterminant structure it is invariant under arbitrary unitary transformation of spin 
orbitals (2) (or space orbitals (I)). Therefore two different sets of orbitals which have 
different shape, but are related to each other by the unitary transformation, are physically 
equivalent because they correspond to the same total wave function. A well known example 
is the case of a completely filled band, where a set of delocalized Bloch functions and a 
set of localized Wannier functions are equivalent. Besides, if the spin orbitals are subject 
to arbitrary non-singular linear transformation, the total wave function will change only by 
a specific factor (normalization factor). Consequently if one has a set of non-orthogonal 
orbitals and linearly transforms it into a set of orthogonal orbitals, both sets will correspond 
to the same (apart from the normalization factor) total wave function. Therefore the 
orthogonality conditions on the orbitals in the RHF method are not a constraint at all. In the 
UHF method one starts with N space orbitals 

&&) k = l , 2 ,  ..., N (3) 

proceeds with N spin orbitals which are &(r) multiplied by either the U(U) or the ,!?(U) 

spin function and takes for the total wave function a single Slater determinant of these spin 
orbitals. The difference between the numbers of U and ,!? spin functions determines the z 
projection of the total spin. All that was said above about the unitary and general linear 
transformation of spin orbitals in the RHF method is also valid in this case. At the same 
time the UHF total wave function is not, in general, a pure spin state, but a spin mixture, 
In the VB method [E] one also starts from N space orbitals (3) as in the ZR~F method, but 
employs 2N spin orbitals, multiplying every space orbital &(r) by both @ ( U )  and ,!?(U) spin 
functions, and constructs from them the pure spin total wave function. The best developed 
case in the VB method is the singlet state case, where one begins with the product of space 
orbitals 

(4) 

This N-electron space function with no permutation symmetry gives rise to an N-electron 
singlet wave function by coupling electrons pairwise (binding them) with the two-electron 
singlet spin function 

(5) 

W l . r 2 ,  .. . ,rN) = h ( r i ) h h ) .  . . h ( r ~ ) .  

X(U7 U') = (I/fi)(a(d,!?(") - B(u)a(o')l. 

Then the singlet N-electron spin function takes the form 

@k(Ul,'%z,. . . P U N )  = n X ( u i ,  U)) (6) 
1.J 
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where the product is over all pairs ('bonds'). The function (6) has an index k because there 
are ( N  - l)!! different spin-paired structures for N electrons. Each structure gives rise to a 
particular function @k though only N ! / ( N / 2 ) ! ( N / 2  + I)! of them are Linearly independent 
[13]. Antisymmetrizing the product of (4) and (6) one obtains functions 

Here F is the permutation operator which can be written as a product of permutation 
operators P, for space and Fc for spin variables; 6(P) is the sign of the permutation and the 
summation is over all possible permutations. Then the total wave function of the system 
can be written as a hea r  combination of linearly independent functions w k  

(8) 

As an approximation one often uses only one basis function w k  corresponding to a particular 
spin-paired structure (6). for example, corresponding to the lowest value of energy. This is 
known as the perfect-pairing approximation. It simplifies calculations but it is an additional 
approximation to the finite basis set (3) approximation. The obtained basis (7) and total 
(8) wave functions of the VB method are not single Slater determinants, as the wave 
functions in the RHF and URP methods are, but a linear combination of determinants. So 
the VB wave function is not invariant under the linear transformation of orbitals because 
it consists of 2N spin orbitals, and each determinant contains only N of them. Therefore 
different sets of orbitals, related to each other by a linear transformation, correspond to the 
different total wave functions. This forces one to employ non-orthogonal orbitals in the 
VB method, because orthogonalization will be now an additional constraint imposed on the 
wave function. At the same time non-orthogonal orbitals are more difficult to deal with, 
because they lead to O(N2), O(N3), and so on, terms in mahix elements, that is to terms 
which increase as NZ, N 3  and so on when N tends to infinity. In the present paper it will 
be shown how to avoid this difficulty in the case of small overlap. The wave function of 
the RHF singlet state and wave functions of ferromagnetic and antiferromagnetic UHF states 
can be considered as particular cases of the VB wave function. Indeed, if we employ non- 
orthogonal orbitals (3), select a spin-paired structure (6) and equate space orbitals belonging 
to the same pair 

* ( X I , .  .. s X # )  = zck*k(Xl,. . . I X W ) .  
k 

M r )  = W) (9) 
the function (7) will be exactly the RHP singlet wave function. This function does not depend 
on the selected spin-pairing structure. From this one can conclude that the VB wave function 
is better than the RHF wave function because it contains twice as many space orbitals. The 
wave function of the ferromagnetic state. can also be written as (7) if for the spin function 
one takes 

QFM(UI, ... , U N )  = ~ ( u I ) ~ ( u z )  .. . C ( U N - I ) ~ U N )  (10) 

This is a pure spin state with maximum possible total spin and spin z projection. 
To write down the wave function of the antiferromagnetic state one has to divide the 

set L: = [ 1.2, . . . , N) into two subsets LI and LZ with equal numbers of points and employ 
the spin function 
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where 

The function O m  is a spin mixture with zero z projection of the total spin. 

3. The energy expression 

Let us consider the low-density electron gas and its ground singlet state. The wave function 
(8) of the VB method seems suitable for this case, because it naturally reflects the Wigner 
crystal localization picture. Let +(r) 

j l+(r)12& = 1 (13) 

be some appropriate one-electron function, localized and normalized to unity. Translation 
of this function into N sites RI of lattice results in the set of N space orbitals 

+ j @ )  =$(r  -Ri). (14) 

We label the lattice sites by the integer j .  and we ascribe the site number to the function 
localized around it. These orbitals in general are not orthogonal to each other and we will 
use the following notation 

si] = / +:(r)4j(r)& (15) 

for the overlap integral. 

immediately follows 
If one employs the function (8) the usual system of linear equations for coefficients Ck 

For basis functions (7) and for an arbitrary operator & I , .  . . .rN) which is spinless and 
symmetrical in its arguments one can write 

( * i ~ I * m )  = E(P)Gtm(P) / #:(rl)+;(rz). . . . , +;(rN)A(rl, rz. . . , . r N )  
P 

x ~ , $ l ( r l ) ~ Z ( r 2 ) , . . . 1 ~ N N ( r N ) 6 1 6 2 ~  ...*&,V (17) 

where 

Grm(P) = 1 @ ( U I , .  . . , U N ) ~ ~ @ ~ ( U I , .  . . . U N ) d U i . .  . . , d". (18) 

It is well known that because orbitals &(r) are not orthogonal the matrix element (17) will 
contain O(Nz), O(N3) etc terms (even for a oneelectron operator) due to the non-linked 
clusters. Therefore direct calculation of (16) becomes impracticable even for moderate N 
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and it is extremely difficult to recognize that the ratio W f N tends to a certain finite value 
when N tends to infinity. However, one can transform the set of linearly independent 
functions Yk into a set of orthonormal functions Yio) using the Uwdin equation [141 

m 

where T is the matrix of scalar products 

T I m  = (Wll'J") (20) 

and B is an arbitrary unitary matrix. With functions Yio' the system (16) reads 

For every matrix element in (21) it is possible to develop the series in powers of overlap, 
which will contain no ambiguous O(Nz),  O(N3) etc terms. This series, of course, will 
be useful only for small overlap, which is the case for a low-density gas near the Wigner 
crystal state. 

In this paper we will consider the simplest case of perfect pairing. The general case 
will be discussed in our next paper. In the perfect pairing approximation with selected 
spin-pairing shucblre, say only one equation is left in the system (21) which gives 

w = (Yll~lYl)/(YllYd. (22) 

To develop a series let us define for any spinless operator 
variable t 

AV) = ~ € ( P ) t n ' P ) G a ( P )  

the function A(t) of real 

#;(ri)...'&(r~dh. .... T N )  

(23) 

where n ( P )  is the exchange parameter which shows how many pairs of different orbitals 
depending on the same variable are in the integrand for that particular permutation P. For 
example, if P is a transposition P,j then n(P)  = 2, if P is a cycle permutation of any three 
indexes i, j, k then n ( P )  = 3, etc. According to the definition (23), one has 

P s 
x ~ , ~ l ( r l )  . . . ~ N N ( r N ) d r l , . . . , d r N  

W i ~ I W )  = A(1). (24) 

Now we will define three functions W ( t )  f o r i  = fi, N(t) for 2 = f , and W(t)  as the 
ratio 

W(t)  = X(t)/N(t). (U) 

Expanding W ( f )  as a Taylor series of t ,  we obtain 

w = W(1) = W(0) + W'(0) + jW"(0) + . . . . (26) 

It is not difficult to calculate derivatives and take their values at t = 0. We will restrict 
ourselves here to the smallest possible value of the exchange parameter n = 2, that is, 
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in the summation over permutations we will take only the identity permutation and all 
transpositions Pij. This corresponds to second order in the overlap approximation which 
was used in Ill]. For the identity permutation G[i ( I )  = 1 and for transpositions we will 
use the short notation 

G'i = G[i(Pii) .  (27) 

As a result we have 

N(0) = 1 

"(0) = 0 
N 

"(0) = - X' SiiSjiG'j 
I ,  j=l 

W(0) = E(0) 

W(0) = 0 

W"(0) = 'H"(0) - Fl(O)N"(O) 

where a prime by the sum means that the two indexes are not equal. w b  is the self-energy 
of the background. It mimics the atomic core interaction energy in a solid and should be 
included to ensure the charge neutrality of the system. Brackets (ilhlk) and (ijlglkl) are 
usual notations for matrix elements of one-electron and two-electron operators. 

(i lhlj)  = ! 4 W - $ A +  V(r)l@i(r)* (31) 

where V ( r )  is the energy of an electron in the background field. 
The second and fifth sums in the right hand side of (29c) are O(N2) terms, because 

indices i ,  j do not couple with k and I ,  hut in (30c) these terms cancel. Simultaneously 
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terms containing wb cancel in (30c) also, as expected. It is possible to verify that the same 
takes place in the third and (more cumbersome) fourth orders in overlap. 

Now the energy expression can be obtained up to second order in the overlap. But first 
let us separate and combine together the slowest decaying terms. Adding and subtracting 
1,'Rij from ( i j lgl i j ) ,  (Rij = IRi - & I )  using the evident relation 

/ 4 ; ( r ) V ( r ) @ i ( r ) &  = / @ X r N V ( r )  - V ( R i ) l @ i ( r ) h  + V W i )  (33) 

arid grouping terms one can obtain 

w = wl+ wvib + we f wxc. (341 

Any of these energies is an O ( N )  term and therefore one can define the energy per electron 

w'here k is 1, vib, ec or xc. 
In equation (34) 

is the collection of the slowest decaying terms and it is exactly the energy of the static 
Wigner lattice. Therefore the energy per electron due to this term is 

wi = -M/rs (37) 

where r, is the usual homogeneous gas parameter (41rr:/3 = V / N )  and M is a constant 
depending on the particular lattice. 

The next term 

is apparently an O ( N )  term. In accordance with (14) one has 

wllich is the energy of a threedimensional quantum harmonic oscillator. 
The next term in (34) 

is the electrostatic correction, that is the difference between the Hartree electrostatic 
interaction energy of localized electrons and that of point charges at lattice sites. The 
mmbers of this sum decay rapidly with increasing Rij.  Therefore this sum is O ( N )  and 
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where the sum is rapidly convergent. 
Finally, 

is the exchange-correlation energy, where 

In (43) the first term is the direct exchange. The matrix element in it is usuaUy positive at 
large Rij.  All other terms are due to the orbitals' non-orthogonality and it is well known 
that these terms govem the value and sign of K i j .  The exchange-correlation term W, 
is O(N). Indeed, indices ij in the right-hand side of (43) are linked by overlap, so K i j  

rapidly decreases with increasing Rij .  The summation over k does not change the order of 
magnitude because of the relation 

and the similar relation with indices ij. The quantity in the brackets in (44) is the potential 
energy of an electron in the positive background field and that of all other electrons and 
is finite. To evaluate the exchange-correlation energy w,, per electron it is necessary to 
specify the pairing shuchue and calculate all Gij .  

There is a well developed Rumers diagram technique [12] for calculating integrals (18) 
in general, but for transpositions the calculations of Gi' are easy and can be done at once. 
If i and j belong to the same pair, then transposition results in a sign change only. If i and 
j belong to a different pairs then 

G'j = x ( U i , U ~ ) x ( U j , U ~ ) x ( U j , U x ) x ( U i , U j ) d U i ~ j d U ~ d ~  = 4. (45) s 
As a result we have 

-1  if i ,  j are in the same pair 
if i ,  j are in different pairs. 

It is evident that for ferromagnetic and antiferromagnetic cases the energy constituents 
WI, W,.jb, and W, are the same as in the singlet state. The difference is in W, because 
of the different values of Gij .  In the ferromagnetic case the function Om is completely 
symmetric and therefore 

G'A = 1. (47) 

In the antiferromagnetic case it follows from (1 1) immediately that 

(48) 
1 if i, j are. in the same sublattice 

if i, j are in different sublattices. 
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4. Discussion 

It is consistent with second order in the overlap approximation to employ the ground state 
three-dimensional harmonic oscillator wave function as orbital 4(r) (13) and to retain the 
nearest neighbours (NNS) only in the sum over pairs in the electrostatic correction W, (40) 
and the exchangecorrelation energy W, (42). In this case 

K i j  are nearest neighbours K . .  - 
‘J - l o  otherwise 

and the energy expression can be written as 

NN 
w = W, + f~ C G ‘ ~  

i j  

(49) 

where WO = Wl + Web + W,, and the sum is over NN pairs. 
In the ferromagnetic case all G‘j are equal to 1. Consequently 

w - = w ~ + $ n K  (51) 

where n is the number of neighbours nearest to a given lattice site. In the antiferromagnetic 
state NNS belong to different sublanices and therefore W, = 0. Hence 

w- = WO. (52) 

The energy of the singlet state depends on the particular pairing structure. One structure 
can be constructed by selecting a pair of NNs, coupling them with a singlet function and 
translating this ‘bond‘ onto the whole crystal. In this case one of the neighbours nearest 
to a given one belongs to the same pair and n - 1 neighbours belong to different pairs. 
Therefore 

mere  are n pairing structures with w:’) energy. 
Another structure can be constructed in a similar way but with a pair of second (or next) 

nearest neighbours (SNN) selected. In this case all the NN belong to different pairs. Hence 

(54) 

In this pairing structure ‘bond’ has no direct physical meaning because we take into account 
the NN overlap only but couple SNN sites. However, making use of the linear dependence 
of different pairing structures mentioned in section 2 one can express the structure with 
SNN coupling as a linear combination of several structures with NN coupling. So the SNN 
smcture corresponds in a sense to a resonating valence bond state. Further still one can 
express the SNN structure as a structure where NNs are coupled but with mixed singlet- 
singlet and triplet-triplet coupling and not the pure singlet-singlet situation. Any sh~~cture 
which is due to the translation of the ‘bond’ between neighbours which are not nearest, and 
has the same number of ‘bonds’, corresponds to the same w f )  energy. So in the infinite 
lattice there are an infinite number of states with the energy w:). 

ws (2) - - w ~ + $ n K .  
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The obtained energies are evidently extreme ones for the singlet state-there is no singlet 
pairing structure with energy outside the [w!), wf ) ]  region (within the approximations 
used). At the same time it is possible to construct a pairing structure with the energy in 
between w:’) and w:) by breaking up the translation symmetry of the pairing structure (not 
the translation symmetry of the lattice). To do so one has, for example, to start with the first 
structure described above, to select a finite NN chain, and Without changing the total number 
of ‘bonds’ to lessen the number of NN ‘bonds’ by ‘rebonding’ the sites crosswise. There 
is an infinite number of such structures with different energy and starting from the first 
structure one can gradually arrive at the second structure ‘rebonding’ one pair of ‘bonds’ at 

(2) a time. Consequently there is a whole energy band of singlet states between wk’ and ws . 
From equations (51)-(54) one can see that in the perfect pairing approximation 

the energy of any singlet state is in between the energies of the ferromagnetic 
and antiferromagnetic states. As it occurs [ll] except for very low densities the 
antiferromagnetic state has the lowest energy, hence K is positive. In this case the lowest 
singlet energy is wj’) which is higher than the energy of the antiferromagnetic state. The 
singlet energy can be lowered by going beyond the perfect pairing approximation to the 
general one (16). However to decide whether it will make the ground state of the electron 
gas a singlet, it is necessary to complete further computations which are in progress now. 
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